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SUMMARY 

A method for determining approximately the coefficient of diffusion of solute 
molecules in beaded gels, based on the analysis of breakthrough curves obtained in gel 
filtration, is described. This is applied to the diffusion of porcine serum proteins, 
gamma-globulin and fibrinogen in Sepharose CL-4B. The diffusion coefficients at 
20°C are 11.2 and 3.6 prn’/s, respectively, about half those calculated from the 
partition coefficients using published equations. 

INTRODUCTION 

The problem of calculating breakthrough curves in beds of porous spherical 
particles was originally treated by Rosen19’, who used a Laplace transform method. 
Subsequent workers have presented improved methods of inverting the Laplace 
transform3-5 and solved more complicated problems of breakthrough curve predic- 
tion6-‘. The aim here was to use experimental breakthrough curves to calculate the 
diffusion coefficients, D,, of solutes in the spherical particles of a gel filtration column. 
Such coefficients could be of interest in the design of gel-filtration operations, in the 
theory of electrophoresis and in the study of affinity chromatography, in which it has 
been suggested that bulk diffusion can limit the performance’. 

The breakthrough curve follows a step change in concentration at the column 
inlet. It is essentially an integrated form of the peak produced as a result of the injection 
of a sudden pulse of solute at the column inlet, as is used, for example, in elution 
chromatography. One approach to evaluating mass-transfer parameters, such as D,, is 
to study the moments of this peak, which may be related to these parameters by 
analytical expressions . lo In order for D, to become the dominant parameter in 
determining the shape of the peak, however, it is desirable to use a residence time that is 
smaller than the time scale of diffusion in and out of the stationary phase. Also, the 
system must be such that, at equilibrium, a substantial fraction of the solute is 
distributed inside the stationary phase. Under these conditions, the peak shows very 
long tailing, giving rise to a significant experimental difficulty in measuring moments” 
(and hence also in determining the variance and theoretical plate height) as these 
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measurements become very sensitive to baseline errors at large times, and it becomes 
difficult to know when to truncate the calculations. Simple methods of measuring 
variance, based, for example, on the width of the peak at half-height, or on baseline 
intercepts12, may no longer be accurate because they assume the peak to be Gaussian. 

To overcome this problem, De Lasa et al. l3 suggested the use of a longer, pulse 
input to the column, and put forward an analysis that enables the length of the pulse to 
be chosen in such a way that the effect of detector error is minimized, enabling the 
method of moments to be applied with greater accuracy. An alternative to the method 
of moments is to compare experimental and theoretical responses to pulse inputs after 
transformation into the frequency domaini4.i5. It is also possible to use harmonic 
variations in concentrations as the input, and to compare the attenuation and phase 
lag at various frequencies with theoretical predictions16g”, although a drawback is 
that a special waveform generator is required. 

In this work, experimental and theoretical breakthrough curves are matched on 
the basis of the area A beneath the curve up the point where the dimensionless time 
(based on the mean residence time) equals unity. This area has been referred to as the 
holdback by Dankwerts18. An important requirement is to ensure that D, is the main 
parameter affecting A, and if necessary to correct for the smaller effects of other 
parameters. 

THEORY 

The degree of chemical interaction between the purified form of agarose used in 
these experiments (Sepharose CL-4B) and most proteins is reported to be very small”, 
and the results of the experiments to be described here tend to confirm this for the 
proteins studied. Terms representing chemical adsorption are therefore ommitted 
from the analysis. The structure of agarose is very line. It is thought to consist of 
a matrix of Iibres of approximate diameter 5 nm20s2r, whereas the particles used here 
have a diameter of the order of 100 pm. It is proposed, therefore, to treat the interior of 
each particle as a homogeneous continuum. The object is to find the diffusion 
coefficients, D,, of proteins inside this continuum. The model equations are as follows: 
in the mobile phase, i.e., outside the particles: 

ac, x+u.+L.!%_ 
a.2 

SD, ac, 
ar r=~ 

in the stationary phase, i.e., inside the particles, which are spheres: 

subject to the following boundary conditions: 

Gn(& 0) = co 
c&k r, 0) = LCO 
C,(O, t > 0) = Gin 

(2) 

4crn - 
ac, 

4KJ = -Ds iir r=R (3) 
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where c, and c, are the concentrations in the mobile and stationary phases, 
respectively, c0 is the initial concentration in the mobile phase, Gin the concentration 
introduced at the inlet at time t = 0, x is the distance along the column axis measured 
from the inlet, Y is the radial coordinate inside the spherical particles, of radius R, of the 
stationary phase, u is the average velocity based on the volume of the mobile phase, Sis 
the surface area per unit volume of mobile fluid, D,_ is a coefficient of longitudinal 
dispersion in the mobile phase, K,, is the partition coefficient and k is the coefficient of 
surface mass transfer. 

The inclusion of the longitudinal dispersion term means that the processes taking 
place in the column are not theoretically independent of events downstream of the 
column outlet. Although in practice such a dependence is likely to be very small, in 
order for the mathematical description to be complete it is necessary to introduce 
a downstream boundary condition. A convenient assumption is 

c,(m, t) = 0 (4) 

Non-dimensionalized quantities are introduced as follows: dimensionless time 
t* = [V(t) - if,,,]/ V,, where V(t) is the volume discharged from the column after time t, 
V, the volume of the mobile phase and V, the partial volume inside the stationary 
phase, which may be considered accessible to the solute molecules (these volumes are 
explained in Fig. 1); dimensionless outlet concentration 

At*) = kout - Gml - co1 (5) 

where c,,~ is the measured outlet concentration (hence y is initially zero and increases to 
one); a dimensionless diffusion coefficient 

D* = D,VJR=Q (6) 

where Q is the discharge from the column; and a dimensionless surface mass transfer 
resistance 

c( = D,K,,/kR (7) 

Application of the Laplace transform leads to an ordinary second-order 
differential equation, from which the solution for the outlet concentration y(t*) may be 
obtained in terms of an inverse Laplace transform (e.g., see ref. 8). When DJuL is 
small (where L is the length of the column), an appropriate form is 

y(t*) = 9-l f ew( - cp(s) + (DL/W [Vm/Va + (~(41~) I (8) 
where 

cp(s) = 3D* 
JslD* coth JslD* - 1 

1 + c&&@ coth JslD* - 1) 

s being the transform variable. 
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Fig. I. Sketch of breakthrough curves giving explanation of the volumes referred to in the text. Molecules 
such as DNA, which are too large to penetrate the stationary phase, reach the outlet once a volume of fluid 
equal to the volume V, of the mobile phase has been discharged. Smaller molecules, such as proteins, can 
penetrate a certain volume V, of the stationary phase. The non-dimensionalized time scale t* is shown. 

As the solutions published by Rosen’ did not cover a sufficient number of values 
of D* for the present purpose, and did not account for the effect of the longitudinal 
dispersion coefficient DL, a means of calculating this inverse transform was needed. 
The Numerical Algorithms Group Fortran library routine C06LAF (ref. 22) was used. 
A note on the computation is given in the Appendix. The solutions agreed well with 
those of Rosen2 in the cases where comparisons were possible. The above choice of 
non-dimensionalizing time scale was found to be convenient in obtaining solutions 
over widely varying values of D*. 

In order to match the theoretical and experimental curves, the parameter used 
was the area A beneath the normalized breakthrough curve as illustrated in Fig. 1. A is 
defined as 

1 

A= 
s 

y(t*) dt* (9) 

-m 

When D* is large and cz is small, the breakthrough is considerably delayed by diffusion 
into the stationary phase and A tends towards zero, but when D* is small (or CY is very 
large) the flow is too rapid for diffusion to occur and A tends towards one. From the 
above equations, A appears to depend on four parameters, i.e., A(D*, a, D-JuL, 
V,,,/ Va). At the computational stage, however, it was found that, for the small values of 
DJuL of interest, A was almost independent of D,_/uL and of Vm/Va provided that the 
product of these two was kept constant (see Table I). The number of parameters was 
therefore effectively reduced to three. Fig. 2 shows the variation of A with D* for 
different values of DJuL, with L-X = 0 and V,/ V, = 1, since this value was appropriate 
to the experiments presented here. When the distribution ratio V,/V, differs 
significantly from one, the contour variable in Fig. 2 may be interpreted as 

( Vm/ VJD,luL). 
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TABLE 1 

COMPUTED VALUES OF A, WITH a = 0, SHOWING THAT A IS APPROXIMATELY CONSTANT 
IF (Vm/Va)(D&L) AND D* ARE CONSTANT 

D* A 

D&L = 0 D&L = 0.02, D&L = 0.01, D&L = 0.005. 
v,iv, = 0.5 v,/v. = I v,jv, = 2 

0.03 0.589 0.600 0.600 0.601 
0.05 0.406 0.424 0.422 0.424 
0.10 0.511 0.526 0.527 0.527 

When DJuL = 0, the choice of V,,,/V, becomes irrelevant and the resulting 
dependence of A on D* is shown in Fig. 3 for four different values of CI. Given 
a measurement of A and estimates of c1, DJuL and V,,,/ V,, Figs. 2 and 3 can be used to 
determine D*, and hence D,, without the need to repeat the computations of 
breakthrough curves. An attraction of matching A, rather than some other parameter 
describing the curves, is that random experimental and computational errors tend to 
be averaged out in the process of integration. In order to obtain reasonable accuracy, 
the flow-rate should be chosen so that A is between 0.4 and 0.8. If it is assumed that 
A can be assessed with a fixed absolute accuracy, the optimum value is about 0.5. 

The surface mass-transfer resistance CI may be estimated on the basis of Pfeffer’s 
mode123*24. This model treats the spheres as if they were each enclosed in a concentric. 

01 

Non-dimensional&d diffusion coefficient 0” 

Fig. 2. Theoretical area A beneath the breakthrough curves, plotted against D* for three values of D,/uL. 
a = 0, v,/v, = 1. 
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Non-dimensionalised diffusion ccefficient DC 

Fi !z. 3 Theoretical area A beneath the breakthrough curves, plotted against IY for four values of SL. 

D&L = 0. 

spherical fluid envelope, the radius of which is chosen so that the total volume of fluid 
in the envelopes is the same as that contained in the mobile phase of the real column. 
The solutions for the mass-transfer coefficient are based on the assumption of creeping 
flow (i.e., low Reynolds number) and at high reduced velocities the model gives the 
following correlation (in a slightly rearranged form), which agrees well with 
experimental studies24: 

Sh = Bv”~ (10) 

where the Sherwood number Sh = RklD,, the reduced velocity v = 2Ru/D, (D, is the 
coefficient of diffusion in the mobile phase) and the dimensionless constant B is 
a function of the ratio y of the sphere diameter to that of the envelope: 

(1 

- - 1’3 

B = 0.63 2 - 3y y5)(1 73) 1 + 3y5 - 2p 
(11) 

and hence of the bed voidage, since V,,,/ Vt = 1 - y3. For a gel filtration column, V,/ Vt 
is typically about l/3, giving B = 1.35. 

The coefficient of longitudinal dispersion in the mobile phase, DL in eqn. 1, can 
be thought of as describing the dispersion which would occur if the solute were not able 
to enter the stationary phase. Such dispersion results from the inequality of residence 
times along various streamlines in the mobile phase (it is assumed that the flow is 
laminar, as the Reynolds number based on particle diameter is less than 0.2 in these 
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studies), and is reduced by the tendency for molecules to diffuse across the streamlines. 
This type of dispersion has been referred to as “eddy diffusion”25*26, although it is, of 
course, a result of convection. Pure longitudinal diffusion, which would occur even if 
there were no flow in the column, is likely to be negligible in the experiments described 
here. The form of the longitudinal dispersion term in eqn. 1 is, however, analogous to 
a diffusive term, and this has an empirical justification as the Gaussian residence time 
distribution which it predicts is often observed in practice. Insofar as the interstices in 
a bed of particles can be compared to a tangled bundle of intermingling, narrow tubes, 
the model has also a theoretical basis in Taylor’s analysis of dispersion in pipe flowZ7. 
The complex geometry of packed columns is such that DL cannot be predicted 
precisely. Practical correlations have to rely on some empirically determined factors 
that depend on the structure of the bed 28’31 . The correlation of Horvath and Lin31 

gives for example (with longitudinal diffusion neglected): 

h= 1 + ;+3 

where h is the reduced theoretical plate height, defined as 

h=&$ 
In 

(12) 

(13) 

(T being the standard deviation of a chromatographic peak, plotted on a volume axis. 
The empirical constants 1 and o were given values of 10.47 and 11.2, respectively, in 
experiments with columns of glass beads 31 This model can be used to estimate . 
longitudinal dispersion in the mobile phase, since32 

DL 1 cr2 -_=---_ 
UL 2 vi 

(14) 

In view of the likely variations form one column to another, however, a preliminary 
experiment was performed to estimate DL using a column that was as similar as 
possible to that in the main experiments, but with a packing that the solute could not 
penetrate. 

EXPERIMENTAL 

Preliminary experiment: estimation of D1 
The object of this experiment was to study the dispersion of a solute that was 

excluded from the stationary phase. The conditions and method were, as far as 
possible, the same as those used in the main experiment described below. A 3. l-cm high 
bed of Sephadex G-25 150 (Pharmacia) with spheres of average diameter 110 pm was 
used instead of the Sepharose CL-4B. The solute and solvent were porcine y-globulin 
(2 mg/ml) and phosphate-buffered saline (pH 7.2), respectively, and the flow-rate 
varied from 1 to 20 ml/min. The breakthrough curve was differentiated automatically 
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by the spectrophotometer, giving nearly symmetrical peaks. The height of this peak 
gave the maximum slope, dy/d V, of the breakthrough curve. From the properties of 
the (assumed) Gaussian residence time distribution, the dimensionless variance was 
calculated as 

o2 1 
-_= 
Vi 2 n V;(dy/d V)’ (15) 

and hence h from eqn. 13. As a check, the values of h were also calculated on the basis of 
the widths of the peaks. 

Mean experiment: measurement of A 
The gel filtration medium was Sepharose CL-4B cross-linked 4% agarose beads 

(Pharmacia-LKB). The object was to measure the area A (and hence estimate D,) for 
two different proteins, porcine y-globulin (Sigma G2512) and porcine fibrinogen 
(Sigma F2629), in the Sepharose. These proteins were made up at concentrations of 
2 mg/cm3 in phosphate-buffered saline (pH 7.2) and prefiltered through 0.45-,um 
membrane filters. To measure the breakthrough curves, and hence estimate diffusion 
coefficients, the column shown in Fig. 4 was devised. It had an inside diameter of 1.45 
cm and the bed height was between 2.8 and 3.0 cm. The top space above the column 
could be completely washed out with a new fluid before this fluid was introduced into 
the column. A sharp, step change in concentration was therefore obtained at the inlet. 
The dead space downstream of the column, including the optical cell and connecting 
tubing, totalled 0.1 ml. Liquid was supplied from a Watson-Marlow 501U roller 
pump. Discharge, which varied from 2.78 to 8.58 ml/min, was calculated from the time 
taken to collect 5 ml at the outlet. The absorbance of the outlet fluid was monitored at 
280 nm using a Shimadzu UV-160 spectrophotometer. A flow cell was constructed 
having an optical path length of 1.5 mm. V, was measured by the exclusion of DNA, 
the source of which was salmon testes (Pharmacia 27-4576-01) or calf thymus (Sigma 
D-1501). To find V, + V, (and hence V,), the column was saturated with protein 
solution of known absorbance and then eluted with a known volume of buffer. 
V,,, + V, was then calculated from the absorbance of the eluted solution. 

Fig. 4. Column used for measuring breakthrough curves 
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These Sepharose CL-4B particles were spherical and had a mean diameter f 
standard deviation of 80 f 20 pm, based on the microscopic examination of 100 beads. 

In some experiments the column initially contained no protein (i.e., co = 0) 
before protein solution was introduced at the inlet. In others, the column was initially 
tilled with a uniform concentration of protein solution (co = 2 mg/ml), and zero 
concentration was introduced at the inlet. 

Experiments were carried out at between 18 and 21°C. 

RESULTS 

The spectrophotometer printed out values of absorbance against time and these 
were converted into graphs of y against t*, with allowance made for the 0. l-ml dead 
volume of the optical cell and tubing. At the same flow-rates, curves obtained with 
co = 0 and 2 mg/cm3 were similar when presented in this way, indicating that there was 
not a significant chemical interaction between the proteins and the Sepharose. In order 
to calculate A, the graphs were divided into about eight strips and Simpson’s rule was 
applied. The results are shown in Tables II and III. A was used to obtain D* from Fig. 
2. Initially it was assumed that both CI and DL were zero. 

From D*, D, could be calculated on the basis of eqn. 6, given the radius R of the 
particles. Whereas the theoretical model assumes them to be of uniform size, in reality 
they are not. However, the work of Rasmuson7 has shown that, when the particle-size 
distribution is as narrow as in this instance, the breakthrough curve is very little 
affected. The appropriate average radius to use is that giving an equivalent surface area 
per unit volume of the particles’, i.e., 

E = 1 R3/z R2 = 43 pm (n = 100) (16) 
n n 

The mean values of D, obtained were 9.9 pm’/s for porcine y-globulin and 3.2 pm2/s 
for porcine fibrinogen, but this was before making any correction for the surface 
mass-transfer resistance, a, and longitudinal dispersion in the mobile phase, DJuL. 

To correct for a, it was assumed still that DJuL = 0, and k was estimated on the 
basis of Pfeffer’s model (eqns. 10 and 11) using for D, published values for similar 
proteins in free solution (see Discussion). It was necessary to know D, before c( could be 
calculated, whereas of course the corrected value of D, was not yet determined. 
Initially a was calculated as on the basis of the uncorrected value of D,. A new value of 
D, was then determined from Fig. 3, using linear interpolation between the contours, 
Once the value of D, corrected for both DL and a had been found as described below, it 
was then possible to iterate to obtain new values of CY and D,, but in fact such iteration 
altered the result by only a very small amount. 

Fig. 5 shows the result of the preliminary experiment in the form of a plot of 
reduced theoretical plate height, h, against reduced velocity, v. The following linear 
regression was obtained: 

h = 2.0 + 4.1 lo-4v (17) 
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00 

Reduced velocity v 

Fig. 5. Reduced theoretical plate height /I YWSUS reduced velocity I’, in preliminary experiment using 
Sephadex G-25 150 and porcine y-globulin, from peaks obtained by differentiation of breakthrough curves: 
0 = from peak height; 0 = from peak width at half height. A = Value calculated from the height of the 

peak when the packing was removed and the column volume reduced to zero. 

Free-solution diffusion coefficients (see Discussion) were used to calculate v. The 
correlation of Horv6th and Lin31 predicts larger values of h. To estimate DJuL for the 
main experiment, eqn. 17 was used because (by eqns. 13 and 14) D,/uL = hR/L. On the 
basis of Fig. 2, values of D, corrected for D&L were calculated as shown in Tables II 
and III. For this purpose it was assumed that CI = 0. 

The above corrections for a and DJuL were made separately, i.e. assuming the 
other to be zero in each instance. As these corrections were small, it was reasonable to 
regard them as being additive, giving D, = 11.2 prn’/s (y-globulin) and 3.6 pm2/s 
(fibrinogen). To have tried to make the corrections simultaneously would have been 
very tedious, as a large number of curves of A against D*, each corresponding to 
a different combination of CI and DJuL, would have had to have been calculated. The 

Yl F ia) Run 3 Yl (bl Run 6 
worst case best case 

-experiment -----theory 

Fig. 6. Comparison ofexperimental (solid lines) and theoretical (dhshed lines) breakthrough curves in (a) the 
worst case and (b) the best case. 
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final values of D,, a and DJuL determined for each run, when fed back into the 
computer, gave values of A that agreed to within about 1% with the measured values. 
This showed the method of adding the corrections to be satisfactory. 

Fig. 6 shows the agreement between the theoretical curves (calculated using the 
mean values of D, for each protein) and experimental curves in what were judged to be 
the best and worst cases. 

DISCUSSION 

The corrections for surface mass-transfer resistance, CC, and longitudinal 
dispersion in the mobile phase, DL were small, giving together an increase of 13% in the 
estimated values of D,, probably only just significant given the experimental accuracy 
in measuring A. The fact that the resistance to mass transfer in the mobile phase is only 
a small part of the total resistance is, perhaps, not surprising considering that the 
mobile phase occupies only about one third of the total column volume, that transfer is 
aided by convection and that the diffusivity is greater than in the stationary phase as 
there are no obstructions. Relatively low surface mass-transfer resistance has also been 
reported in the low-Reynolds-number flow of hydrocarbon gases through silica gel 
packed columns33. 

The estimation of DL in the preliminary experiment could not be exact as the 
column was similar to but not identical with that of the main experiment. However, as 
the correction for D,_ was small, even fairly large errors would not have a great effect on 
the final result. 

As this method of determining diffusion coefficients is indirect, it is limited in 
accuracy, but it is thought that with care it should generally be possible to obtain 
values that are accurate to within about i 25%. It is particularly important to measure 
V,,, as accurately as possible. Light scattering, as an alternative means of measuring 
diffusion coefficients, would probably be difficult to apply owing to scattering of light 
by the Sepharose particles. 

In order to use the present method, the residence time in the mobile phase must 
be sufficiently small compared with the diffusion time in the stationary phase. 
However, as flow-rate is limited by compaction of the Sepharose, this is difficult to 
achieve with molecules that diffuse much more rapidly than the y-globulin molecules 
studied here. This could be overcome by using larger particles, which would increase 
the diffusion time and decrease the resistance to flow, but such particles are not so 
readily available commercially. 

It is interesting to compare the diffusion coefficients inside the Sepharose 
particles, D,, with those in free solution, Do. Values for Do have been reported for 
human serum proteins34: 40 pm*/s for immunoglobulin-G (the main constituent of the 
y-globulin fraction) and 19.7 prn’/s for fibrinogen. It seems probable that similar 
values would apply in the pig. Ogston et al. 35 derived the following equations from 
theoretical considerations of molecular motion inside a fibre matrix: 

OS/Do = exp[ -(r, + r&:/*/r,] 

(18) 
K,, = exp[- (y, + rr)’ vr/$l 
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TABLE IV 

COMPARISON OF EXPERIMENTALLY DETERMINED DIFFUSION COEFFICIENTS WITH 
VALUES GIVEN BY THEORY OF OGSTON ET AL.= 

Protein 

y-Globulin 
Fibrinogen 

KI” 
(experiment) 

0.62 
0.39 

&I& 
(experiment) 

0.28 
0.18 

&I& 
(theory) 

0.50 
0.37 

where Y, and rf are the radii of the solute molecules and libres, respectively, and vr is the 
volume of tibres per total volume. From these equations it follows that 

W& = exp[ - ,/< - ln KJ (19) 

It can be seen in Table IV that the experimental values of OS/DO are about half of the 
theoretical values based on the experimental values of K,, (calculated as K,, = Va/ V,). 
As the theory of Ogston et a1.35 was derived for spherical molecules, in principle it 
should be more applicable to the y-globulin than to the fibrinogen, although from these 
results it appears to give a similar precision in both instances. Considering that K,, is 
more easily measured than D,, the equations of Ogston et aL3’ may well be useful in 
obtaining an estimate of D,. 

CONCLUSION 

Diffusion coefficients of proteins inside a gel-filtration medium may be 
determined with fair accuracy by comparison of experimental and theoretical 
breakthrough curves, using the area A under the curves up to t* = 1 (i.e., holdback) as 
a matching parameter. Provided that the flow is sufficiently rapid, and that the 
stationary phase has a high equilibrium capacity for the protein, A will be large, and 
resistance to mass transfer through the mobile phase to the particle surface and 
dispersion due to non-uniformity of flow in the mobile phase will be secondary effects 
for which corrections can be made. The method of introducing the protein solution 
described here enables dispersion in the space at the top of the column to be minimized. 
Graphs are presented that enable the method to be applied without the need to 
compute the breakthrough curves again. The diffusion coefficients determined for 
porcine y-globulin and porcine fibrinogen in Sepharose CL-4B of 11.2 and 3.6 pm2/s 
respectively, are about half those calculated on the basis of the equations of Ogston et 
al.35. 

APPENDIX 

Note on computations 
The library routine C06LAF requires the user to write a subroutine to calculate 

the Laplace transform given a complex value of s. In Fortran, complex numbers may 
be manipulated directly without the need to separate real and imaginary parts. It is 
important when using this library routine to know the approximate maximum value of 
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the inverse transform y. For this reason, in contrast to the inversion method of Chen 
and Hsu’, it is better to calculate the response to a step function, so that y I 1, rather 
than an impulse function, even though the impulse function involves a simpler 
transform. The routine was used to calculate y at 0.02 intervals oft* in three ranges, 
0.02-o. 18,0.20-1.00 and 1.02-2.00. The parameters TFAC and ALPHAB were both 
set to 1.0. The maximum number of terms to be used in the Fourier series 
approximation of the inverse transform was set to 50; usually about 20 terms were 
required. An accuracy of 1% was specified for y. At a few values oft*, an error in y of 
greater than 1% was reported by the routine, but this did not contribute a significant 
error to A following the integration (eqn. 9) between t* = 0 and 1 using Simpson’s rule. 

In the cases where DL/uL # 0, y could be positive at negative times, and it was 
therefore necessary to shift the Laplace transform one unit along the time axis in order 
to avoid the problem of having to invert the transform at negative times. The 
integration to find A was then performed between t* = -0.3 and 1. 
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SYMBOLS 

A area beneath breakthrough curve 
B dimensionless constant in eqn. 10 
C concentration of protein, mg/cm3 

c, concentration in mobile phase 

c, concentration in stationary phase 

Gin concentration at inlet of column 

C,,t concentration at outlet of column 

CO initial concentration in mobile phase 

DL coefficient of longitudinal dispersion in the mobile phase 

&l diffusion coefficient in mobile phase 

D, diffusion coefficient in stationary phase 

Do diffusion coefficient in free solution 
D* D,Va/R2Q, non-dimensionalized diffusion coefficient. 
h reduced theoretical plate height 
k surface mass-transfer coefficient 

KV V,/ V,, partition coefficient 
L length of column 
3-r inverse Laplace transform 

e discharge 
r radial coordinate inside spherical particles 
R radius of spherical particle 
R mean radius giving equivalent surface area/volume 
s Laplace transform variable 
S surface area per unit volume of stationary phase 
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Sh 
t 
t* 
u 

Vf 

V 

V, 
Vltl 
V, 
Vt 

X 

Y 

Sherwood number, Rk/D,,, 
time 
[V(t) - V,]/ V,, non-dimensionalized time 

QU Vm, average velocity, based on volume of mobile phase 
volume fraction of fibres in the stationary phase 
volume collected at outlet 
partial volume of stationary phase accessible to the protein molecules 
volume of mobile phase 
volume of stationary phase 
total volume of column 
coordinate measured along column axis from inlet 

(cast - cO)/(cin - c,,), non-dimensionalized form of concentration at outlet 

D,K,,/kR, surface mass-transfer resistance parameter 
function of s in eqn. 8 
(1 - Vm/V,)‘i3, geometric parameter of Pfeffer’s model 
dimensionless parameter of the model of Horvath and Lin 
reduced velocity 2RulD, 
standard deviation of a chromatographic peak on volume axis 
dimensionless parameter of the model of Horvath and Lin. 
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